Incubation & Embryology

9th Bi-Annual International Pheasant Management Seminar March 2-5, 2014

R. Keith Bramwell, PhD
Extension Breeder/Hatchery Management
Department of Poultry Science
The University of Arkansas

Fertilization

- Location infundibulum
- Funnel shaped acts to engulf ovum

Fertilization

- Fertilization occurs< 5 minutes after ovulation
- Capture of ova is not necessarily a result of ovulation
- Ova present ~ 15 minutes (in chickens)

Fertilization

Shell formation takes24-26 hours to complete

Hen's body temperature
 104 - 106° F

Sperm Cell Storage

 A biological necessity to produce fertile eggs in the avian system

Fertile and Infertile Eggs

Infertile egg

Fertile egg

Fertilization & Embryo Development

- Fertilization occurs within 5 minutes after ovulation
- Shell formation takes 24-26 hours to complete
- Hen's body temperature 104 -106° F
- A laid egg represents 1 days embryonic growth (20,000 - 40,000 cells)

Egg Handling

- Needs more attention and has a huge impact on hatch of fertile.
- Egg handling starts at the farm and continues until the eggs are set in the incubator.

Eggs Evaluated

- Control
- Broken/cracked
- Cull/shell Quality
- Dirty
- Sanded
- Wiped
- Upside Down

Effect of Egg Storage Temperature on Hatchability

Keith Bramwell, Savannah Henderson, Doug Yoho The University of Arkansas, Scott Martin, Cobb-Vantress, Inc.

What does egg storage and storage temperature do to embryo growth and hatchability?

Why Are Eggs Stored?

- Management perspective
 - To obtain sufficient egg numbers from each flock
 - Egg management, to fill machines/orders
- Physiological goals
 - Stop (or slow) embryo development

Effects of Egg Storage

Main effects of storing eggs:

- 1) Prolongs incubation time
 - 1 day storage adds 1 hour to incubation time
- 2) Hatchability depressed with storage
 - After 7 days 0.5 to 1.5% hatch loss per day stored
- 3) Chick quality depressed
 - After 14 days egg storage

IVISION OF AGRICULTURE

Effect Of Egg Storage On Hatchability

Purpose of Storing Hatching Eggs

- "Arrest" embryo development
- "Physiological Zero" The temperature at which embryonic development stops, or is appreciably decreased
- In order for embryonic development to be virtually stopped, on-farm egg coolers are typically set between 63°F and 70°F

Embryo Development (Germinal Disc Size in mm)

Storage		116	196		
time	75.0 ° F	80.0 ° F	85.0 ° F	90.0 ° F	100 ° F
24 hr	4.96	5.44	6.01	7.41	12.29
48 hr	4.78	6.08	10.19	15.48	-
72 hr	4.87	6.54	16.68	28.23	-
96 hr	4.86	9.13	22.62	38.96	_

Time Required to Cool Eggs From 100°F (37.8°C) to 65°F (18.2°C)

Sealed Egg Cases	Egg Cases with Holes in Side	Wire Baskets	Incubator Egg Trays	
4-5 days	1-2 days	1 day	³¼ day	

Commercial Chicken Production Manual

Hatchability

What does variations in on-farm hatching egg storage do to hatchability?

Fluctuating Egg Storage Temperature

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

Hatch Loss Caused by Storage Temperature

Data Loggers

- An important tool today is following egg room temperatures with data loggers.
- Data loggers can also follow temperature in the nest and belt.
- Many problems have been solved using data loggers to correct fluctuations or re-insulate farm coolers.

DATAL OGGE

STOP

POWER

Summary

- Most hatchability problems are a result of poor fertility
- However, when egg production is attained, and the flock maintains high levels of fertility, how we care for hatching eggs can have a tremendous effect on the overall hatchability

Incubation and Hatchery Management

Keith Bramwell, PhD
Department of Poultry Science
The University of Arkansas

Introduction

 Advances in hatchery and incubation technology and the equipment available continues to improve and provide opportunities previously unavailable

Incubation Time

- Three factors influence incubation time:
- 1) Temperature of incubation
 - Somewhat fixed, but can be adjusted for age of flock, hatchery equipment, etc.
- 2) Age of eggs
 - Stored egg take longer to incubate (add 1 hour per day storage)
- 3) Size of the eggs
 - Larger eggs take longer to incubate

Setter Operation

- Correct temperature
- $(\sim 98.0 100.3 F)$

Correct humidity

- (~ 54%, ~ 82 F wet
- bulb)
- Adequate gas exchange (~ 12% weight loss)
- Regular turning of eggs (~ 1 x per hour)

Setter Operation

- There are three types of commercial incubation systems
 - Multi-stage fixed rack
 - Multi-stage buggy loading
 - Single-stage buggy loading

Incubation Types

- Three main types of machines:
- 1 Multi-stage fixed rack

Incubation Types

Three main types of machines:

2 Multi-stage buggy loading

Incubation Types

Three main types of machines:

DIVISION OF AGRICULTURE

3 Single-stage buggy loading

Heat Production of Incubating Eggs

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE Cooperative Extension Service

	Incubator Profile July 2008				
Day/Hr	Temperature	Humidity	Damper %	Damper CO2	
0.00	100.3F	70%	0		
3.00	1003,E	70%	0		
4.00	100.1F	70%	0		
6.00	100.0F	70%	0		
8.00	99.9F	67%		10000 PPM	
9.00	99.8F	65%		10000 PPM	
10.00	99.7F	60%		4000 PPM	
10.09	99.6F	55%		4000 PPM	
10.18	99.5F	50%		4000PPM	
11.03	99.4F	45%		4000 PPM	
11.12	99.3F	45%		4000 PPM	
11.21	99.2F	45%		4000 PPM	
12.06	99.1F	45%		4000 PPM	
12.15	99.0F	45%		4000 PPM	
13.00	98.9F	45%		4000 PPM	
13.09	98.8F	43%		4000 PPM	
13.18	98.7F	42%		4000 PPM	
14.03	98.6F	42%		4000 PPM	
14.12	98.5F	42%		4000 PPM	
14.21	98.5F	42%		4000 PPM	
15.06	98.4F	42%		4000 PPM	
15.15	98.4F	42%		4000 PPM	
16.00	98.3F	42%		4000 PPM	
16.12	98.2F	42%		4000 PPM	
17.00	98.2F	42%		4000 PPM	
17.12	98.1F	42%		4000 PPM	
18.12	98.0F	42%	100%		

	Incubator Set Up					
Turn			Humidity			
1. Turn Every 60 Minutes					1. Humidity on @ Day 10	
2. Stop Turn @ Day 15			2. Dehumidifier on @ Day 10			
						3. Auto Damper Off
		F	അം			CO2
Hold	0 – 1	1-3	3-10	10-14	14+	1. Span Conc. @ 5000 PPM
40%	100%	75%	90%	100%	100%	2. Min. Damper @ 15%
						3. Hysteretic @ 300 PPM
						4. High C O2 @ 12000 PPM
						5. Safety Day @ 10
						6. Damper Durty @ 30%

ac Farlance

Ventilation

- Setters draw fresh air from the room they are in and expel CO₂ and excess heat
- Setters have internal humidity and temperature control, but incoming air (from the room or hallway) is pre-humidified and temperature controlled

Temperature Control

- Temperature determines the metabolic rate and development of the embryo
 - Multi-stage incubation temperature remains constant
 - Single-stage incubation temperature can be altered to best stimulate growth. Starting with a higher temperature then reduced thereafter. (incubation profiling)
 - Temperature variations due to incorrect loading will create incubation problems

Humidity

- Egg shell contains pores from which water vapor is lost from the egg during incubation
- Humidity can control the moisture loss
- Approximately 12% weight loss should occur by 18 days incubation
 - Weigh eggs at day 0, and weigh the same eggs again at 18 days.

Turning

- Eggs musts be turned during incubation about ~ 1 time per hour (3 or 5 x per day)
- Prevents embryo from sticking to membranes of the shell and aids in development of embryonic membranes
- Necessary first 2/3 of incubation period

Egg Transfer

- Eggs are transferred from the setter to the hatcher at 20-21 days of incubation for several reasons
 - 1) To lay eggs on their side to allow freedom of movement during the hatching process
 - O2) Better hygiene as fluff from hatched chicks and eggs is contained in hatchers and hatcher halls, this helps reduce contamination
 - 3) Eggs and embryos are sorted and processed at this time

Operation of Hatchers

- Most commercial hatcheries hatch 4 times per week, twice from each hatcher
 - Monday and Thursday
 - Tuesday and Friday
- Hatchers are washed between each hatch to ensure cleanliness
- Construction must be durable to handle these factors

Operation of Hatchers

- Ventilation & Humidity
 - Initially the same as in the setters
 - As chicks begin to pip humidity rises to keep shell membranes moist

- Temperature
 - Usually slightly lower than in the setters

Success???

 Hatchability is an indication of the breeder-hatchery program

 Hatch of Fertile is an indication of the hatchery management

Embryodiagnosis

Keith Bramwell
Department of Poultry Science
The University of Arkansas

Methodology

- Important for managers to have direct knowledge of breakout results
- Managers should monitor candling and breakout procedure routinely and correlate with people doing breakout
- Best if managers can assist on breakouts, especially when problems exist or decisions are to be made based on breakout

Percent Mortality of Fertile Eggs

Percent Mortality of Fertile Eggs

Embryonic Mortality Pattern

- 1-7 days (2 4 days)
 - **-** ~ 3.0 %
 - Blood & circulation system developing
- Potential causes
 - Poor egg handling (gathering & storage)
 - Aged flocks (infrequent mating)
 - Incubator problems

Embryonic Mortality Pattern

- 8 -18 days
 - ~ 0.5%
- Potential causes
 - Incubator problems
 - Breeder nutrition
 - Riboflavin
 - Vitamin B12
 - Manganese
 - Pantothenic acid

Embryonic Mortality Pattern

- 19-25 days
 - **~** 2.5 %
 - Switch to pulmonary respiration
- Potential causes
 - Increase moisture loss (pull time, low humidity, poor shell quality, etc)
 - Aged flocks
 - Contamination
- Egg orientation

Hatchery Residue Breakout

Trateriery Residue Breakeat													
DATE			FLOCK#				BREED			AGE			
% PRODU	CTION		% ACTUAL HATCH				SET DATE			SETTER#			
			DEAD EMBRYOS				CR			ACKS			
	eggs/tray unhatched	infert.	early 1-3 days	early 4-7 days	mid	late	pipped	cull chicks	farm	trans	contamin ated	cull eggs	up-side down
TOTALS													
DEDCENT													

EGGS / TRAY = 144 eggs * 2 trays = 288 eggs

Fertility = **100.00**

Hatch of Fertile = **0.00**

Action Plan

- Accurate egg break-out
 - Hatchery manager & supervisor involvement
- Standard summary
- Analysis of data
- Action plan of correction
- Use information as a management tool

Flock Examination & Record Keeping

- Breakout analysis of a sample of unhatched eggs and record incidences of:
 - Infertiles
 - Dead embryos in one of the 3 stages
 - Pips
 - Cull chicks and cull eggs
 - Farm & transfer cracks
 - Contamination
 - Misplaced eggs (small end up)

Flock Examination & Record Keeping

- Determine percent weight loss from samples of eggs
 - Weigh eggs prior to incubation
 - Weigh eggs at transfer
 - Calculate weight loss (moisture)
 - Ideal range0.6 0.65 % per day
 - Acceptable0.55 0.7 % per day

Trouble Shooting Hatchery Problems

- Can the problem be identified with:
 - Specific flocks or flock ages?
 - Specific setters, hatchers or other equipment?
 - Any unusual weather patterns?
 - Seasonal changes?
 - Recent changes in management practices or personnel?

Trouble Shooting Hatchery Problems

- Does the problem persist?
- Do you know what is normal, or what should be expected?
- How has this same bird or combination performed in the past?

Hatch Residue Analysis

- Record results for each hatch.
- Why? You can't fix poor hatchability if you don't know why they aren't hatching!!!

Strategy

 Learn to use egg break-out data to develop action plans for hatch improvement and monitor results of the action plan.

Summary

- Obtain appropriate data and keep good records
- Try and identify flocks or equipment as potential problems and/or eliminate areas that are not a factor

Summary

- Try and determine if any other changes have occurred that may affect the problem
- Make necessary adjustments where needed

Fertile vs. Infertile

- Do not classify abnormal conditions as fertile
 - Blood spots (not blood ring remnants)
 - Meat spots
 - Mottled yolks
 - Contamination (esp. Yeast)
 - Chalaza

Pipped

- Signs
 - Dead in shell
 - Full-term embryo

- Low humidity or temperature for long periods
- Hatcher humidity low
- High temperatures during hatching
- Nutritional deficiencies
- Breeder disease
- Poor ventilation
- Inadequate turning (day 1-12)
- Injury during transfer
- Prolonged egg storage

Not Pipped

- Signs
 - Dead in shell
 - Full term embryo
 - Large yolk sac
 - Yolk sac may not be fully engulfed by abdominal wall
 - May have residual albumen

- Inadequate turning
- Humidity high
- Setter temperature low
- Eggs chilled (transfer)
- Nutritional deficiencies
- Genetics
- Embryo accidental development
- Breeder disease
- Poor ventilation
- Prolonged egg storage

Partially Pipped

- Signs
 - Embryo alive
 - Embryo dead

- Same as for pipped, full-term embryos
- Excessive fumigation during hatching
- Egg set small end up

Malpositioned Chicks

- Signs
 - Normal position after 19 days
 - Embryo long axis same as egg long axis
 - Head in large end of egg
 - Head to the right and under right wing
 - Beak towards air cell
 - Feet towards head

- Eggs set small end up
- Improper egg turning
- Setter temperature too high or too low
- Humidity too high
- Old breeders
- Round shaped eggs or very large eggs
- Nutritional deficiencies
 - Vit A and vit B₁₂
- Poor egg handling or storage
- Retarded development

Chicks Hatching Early

- Signs
 - Excessively noisy chicks
 - Thin chicks
 - Dry skin around legs and feet
 - Increased 7 day field mortality

- Causes
 - Small eggs
 - Breed differences
 - Setter temperature too high
 - Setter humidity too low

Chicks Hatching Late

- Signs
 - OCalled 'green chicks'
 - Swollen abdomen

- Causes
 - Large eggs
 - Old breeders
 - Eggs stored too long
 - Setter temperature too low
 - Weak embryos
 - Inbreeding (genetics)
 - Setter humidity too high

Slow Hatch

- Signs
 - Protracted or 'drawnout' hatch
 - Mixture of early and late hatched chicks
 - Chicks begin hatching early but slow to finish

- Mixture of eggs stored too long and too short
- Mixture of eggs from young and old breeders
- Mix of large and small eggs
- Improper egg handling
- Hot or cold spots in setters or hatchers
- High or low temperatures in setters or hatchers
- Poor ventilation in machines and rooms & hallways

Poor Chick Quality

- Signs
 - Hatching trays not hatching uniformly throughout machine

- Mix of large and small eggs
- Mix of eggs from young and old breeders
- Mix of eggs from different strains (breeds)
- Variation in egg storage
- Setter or hatcher ventilation not uniform
- Disease or stress in <u>some</u> breeder flocks
- Variation in on farm egg storage procedures

Open or Unhealed Navel

- Signs
 - Open and unhealed navels
 - Ory, rough down feathers

- Setter temperature too high or variation in temperature
- Hatcher temperature low
- Hatcher humidity too high, or not lowered at hatch completion
- Poor breeder nutrition

Stringy Navel

- Signs
 - Ory, rough down
 - Unhealed navel
 - 'string' attached to navel
- Causes
 - Setter temperature too high or too low
 - Wide fluctuations in temperature
- Hatcher humidity too high
- Inadequate breeder nutrition

Unhealed Navel, Infection

- Signs
 - Wet, odorous chicks
 - Large, mushy
 - Soft bodied, lethargic
- Causes
 - Omphalitis, navel infection and contamination
 - Egg contamination from breeder farm, egg transport, hatchery
 - Unsanitary trays, machines, etc
 - Setter temperature too low
 - Setter or hatcher humidity too high
 - Poor ventilation

Red Hocks

- Signs
 - Red hocks
 - hatched chicks
 - unhatched chicks
 - Red abrasion on upper beak
- Causes
 - Difficulty during hatching and pipping
 - Thick shells (pullet flocks)
 - High setter humidity
 - Low setter temperature
 - Vitamin deficiency

Chicks Stuck in Shell

- Signs
 - Some chicks stuck in shell
 - Chicks dry
 - Shell fragments stuck to down
- Causes
 - Humidity too low during egg storage, incubation, and/or hatching
 - Improper egg turning
 - Cracked eggs or poor shell quality

Skeletal Malformations

- Signs
 - Posterior duplication
 - Any multiple truncated development
- Causes
 - Poor egg storage and handling
 - Genetics
 - Nutritional deficiencies
 - Examples: biotin, riboflavin, zinc, manganese
 - Inadequate turning
 - Improper egg orientation (small end up)
 - Setter temperature too high or too low
 - Breeder disease
 - Poor venitilation or poor conductivity of eggs.

Brain Hernia (Exposed Brain)

- Temperature too high
- Egg turning problems
- High CO₂ level
- Equipment malfunction

Cross Beak & Missing Eye

- Temperature too high
- Egg turning problems

